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ABSTRACT 

Rainfall-induced landslides are a common occurrence along Alabama highways leading to 

significant damage to infrastructure and disruption to traffic. There are no current approaches in 

use to predict when these slides are likely to occur, which limits the ability of ALDOT personnel 

to respond or intervene. This study developed a monitoring and assessment program for landslides 

along Alabama highways with the goal of increasing the usability of current monitoring data and 

to provide approaches to predict when slopes are likely to move. This study explored different 

monitoring options and deployed automated monitoring tools at two high priority landslide sites 

in Alabama. In addition to monitoring at these sites, different options for monitoring deformations 

were tested during a large-scale experiment at the Advanced Structural Engineering Laboratory. 

A database of landslide events in Alabama was developed using historical inclinometer data 

provided by ALDOT. This database was compared with precipitation and soil moisture data to 

understand both patterns of landslide triggering and to develop a geotechnical health monitoring 

plan that can provide warnings when movements are likely to occur at unstable sites. The findings 

from this work highlight the importance of monitoring data to understand landslide movements 

and have identified thresholds that can be used to both assess areas where landslides are likely to 

have occurred following large storm events and to provide warnings of potential movements at 

landslide sites using forecast data. This report documents available options for landslide 

monitoring, findings from monitoring of two landslide sites, a comparison of the processed 

inclinometer database with previously published thresholds for landslide triggering, and 

development of a geotechnical health monitoring plan that can provide warnings when unstable 

movements are likely to occur. Recommendations for implementing this research into ALDOT 

practice are discussed, along with areas for future research.     
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1 Introduction 

1.1 Background 

Rainfall-induced landslides are a common occurrence in many parts of Alabama (Montgomery et al. 2019). When land-

slides occur along highways they can lead to signifcant damage to infrastructure and disruption to trafc. Designing 

efective repairs for a landslide requires an understanding of the failure mechanisms and soil properties (Duncan, Wright, 

and Brandon 2014). While in-situ and laboratory testing can be used to assess soil strengths, monitoring is often used 

to understand the failure mechanism that is leading to movements at unstable sites. This typically includes placing incli-

nometers, to measure lateral deformation, and piezometers, to measure groundwater levels, at key locations around the 

site. Readings are then taken at regular intervals to identify patterns of movement and fuctuations in the water table. This 

process can be very labor intensive, especially if readings need to be taken on a daily or weekly basis. 

Automated landslide monitoring and alert systems have been developed for many areas across the world. These sys-

tems rely on both local instrument-based monitoring and remote sensing-based measurements. Common types of local 

monitoring include inclinometers, shape arrays, pore pressure transducers, soil moisture sensors, tilt sensors, surveys, and 

rain gauges. These measurements provide important data on the response of the landslide over time to diferent types of 

loading. Remote sensing tools are also used to assess landslide risk at a larger scale and include tools such as rainfall mon-

itoring, soil moisture estimates, and aerial surveys (e.g., uncrewed aerial vehicles or UAVs, LiDAR). The measurements 

collected from both local monitoring and remote sensing data are then often integrated to identify thresholds that may indi-

cate a landslide is likely to occur. This can be done for individual sites, large regions, or even globally (e.g, D. Kirschbaum 

and T. Stanley 2018). These thresholds are then used to issue warnings to stakeholders. 

Monitoring precipitation at landslide sites is critical to be able to identify when movements are likely to occur. In-

stalling and maintaining rain gauges at each monitoring site may not be feasible, but free, publicly available gridded pre-

cipitation data may be adequate for monitoring. High resolution (0.25°x0.25°) data are available in real time that are based 

on remote sensing, interpolation of data from rain gauges, and reanalysis of multiple data sources (e.g., National Center 

for Environmental Prediction Reanalysis). One disadvantage of these regional datasets is they may not accurately capture 

intense, localized precipitation events. However, a prior analysis of previous precipitation-induced landslides in Alabama 

indicates that most are caused by tropical depressions or other large storm systems (Montgomery et al. 2019), which last 

for several days and produce rainfall over a large area. 

The objective of this study was to develop a monitoring and assessment program for landslides along Alabama high-

ways. The goal of this work was to increase the usability of monitoring data collected by ALDOT and to allow for con-

tinuous monitoring of high-priority landslides to quickly identify problems and prioritize interventions or repairs. This 

study explored diferent montioring options and deployed automated monitoring tools at two high priority landslide sites. 

In addition to monitoring at the these sites, diferent options for monitoring deformations were tested during a large-scale 

experiment at the Advanced Structural Engineering Laboratory. A database of landslide events in Alabama was developed 

using historical inclinometer data provided by ALDOT. This database was compared with precipitation and soil moisture 
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data to understand both patterns of landslide triggering and to develop a geotechnical health monitoring plan that can 

provide warnings when movements are likely to occur at unstable sites. 

The fndings from this work highlight the importance of monitoring data to understand landslide movements and have 

identifed thresholds that can be used to both assess areas where landslides are likely to have occurred and to provide 

warnings of potential movements at landslide sites. This report documents available options for landslide monitoring, 

fndings from instrumentation installation and monitoring of two landslide sites, a comparison of the processed inclinometer 

database with previously published thresholds for landslide triggering, and development of a geotechnical health monitoring 

plan that can provide warnings when unstable movements are likely to occur. Recommendations for implementing this 

research into current ALDOT practice are discussed. Topics related to this study that could beneft from future research 

are also discussed. 

1.2 Project Objectives 

The overall purpose of this research was to develop a geotechnical health monitoring program that can be implemented at 

landslide sites along Alabama highways. This was accomplished by identifying instrumentation options that can be used to 

monitor landslide sites, creating tools to store and analyze monitoring data, and creating a system to identify regions where 

slopes are likely to become unstable in order to prioritize interventions. Specifc objectives for this project include: 

1. Collect detailed information on landslide monitoring technologies. 

2. Evaluate benefts and drawbacks of selected monitoring technologies and deploy instrumentation at two landslide 

sites. 

3. Develop tools to collect and display monitoring data from current and future landslide sites. 

4. Evaluate relationships between precipitation and landslide movements using previously collected landslide databases 

and remote sensing data. 

5. Develop guidance for ALDOT on implementation of geotechnical health monitoring and assessment for unstable 

slopes. 

1.3 Scope of Work 

The following tasks were performed to accomplish the research objectives of this project: 

• Task 1: Complete a detailed review of landslide monitoring technologies with a focus on low cost and low mainte-

nance options 

• Task 2: Develop a web-based data portal to collect and display monitoring data from current and future landslide 

sites 
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• Task 3: Evaluate selected instrumentation through experiments and trial deployments in the feld 

• Task 4: Implement the monitoring program at two high-priority landslide sites 

• Task 5: Create a condition assessment approach for landslide sites and warning thresholds to alert for potential 

movements 
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2 Review of Landslide Monitoring Options 

2.1 Introduction 

Monitoring of slopes along highways can involve a wide range of objectives such as: (1) monitoring changes in behavior 

and assessing performance, (2) acquiring parameters for design purposes, (3) implementing early warning systems, (4) risk 

management, (5) understanding failure mechanisms and triggering factors, and (6) evaluating new instrumentation options 

(Smethurst et al. 2017). Once unstable slopes have been identifed, monitoring is critical for identifying where movements 

are occurring and assessing changes that may signal an imminent larger failure. Current monitoring approaches often rely 

on manual measurements of displacement, groundwater elevation, and climate variables, such as precipitation. Periodic 

readings of inclinometers and observation wells are common landslide monitoring strategies (Smethurst et al. 2017) and 

are used extensively by ALDOT. However, this process is labor intensive and may not provide data frequently enough 

to clearly recognize changes in behavior. An alternative approach is to employ infrastructure health monitoring, which 

leverages data collected from multiple sensors to assess the condition of critical infrastructure in near real time. This is 

a new approach for geotechnical monitoring. More work is needed to identify which data are most critical to catching 

failures before they occur and develop techniques to present and utilize large amounts of data in a way that is meaningful 

and useful for decision makers (Uhlemann et al. 2016). Aufič et al. 2023 categorized some of the landslide monitoring 

techniques from studying 75 recorded landslides between 2005 and 2021 from Euro- GeoSurveys as shown in Figure 1. It 

is worth noting that a comprehensive approach to landslide monitoring includes both movement and environmental factors 

in order to relate movement events to their triggering mechanisms such as rainfall, temperature, and soil moisture content 

(Uhlemann et al. 2016). In selecting the options for implementing a monitoring plan, it is ideal to have high resolution, 

low cost, ease of data processing, and high durability (Smethurst et al. 2017), but it is rare to be able to meet all of these 

objectives. Some of the main monitoring techniques used for landslides are discussed in this chapter. 

Figure 1: Landslide monitoring options (Aufič et al. 2023). 
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2.2 Monitoring Options for Landslide Sites 

Landslide monitoring is essential for understanding and mitigating potential hazards. Geotechnical methods are the primary 

and most common techniques used for landslide detection, with sensors installed on the surface or in subsurface boreholes, 

providing data either periodically or continuously. Geodetic methods monitor the movement of specifc points, with tech-

niques like terrestrial laser scanning (TLS) and photogrammetry being widely used for landslide detection. Hydrological 

parameters, such as precipitation, groundwater levels, and pore water pressure, are key to predicting landslides and defn-

ing thresholds. These measurements can be taken periodically or continuously, contributing to more accurate forecasting. 

Choosing the appropriate landslide monitoring approach depends on the landslide’s characteristics, site-specifc conditions, 

and the acceptable level of risk or damage. 

2.2.1 Inclinometers 

Inclinometers are extensively utilized for subsurface movement monitoring, particularly in landslide-prone areas. They are 

primarily employed to quantify the magnitude and rate of displacement and to identify the depth of the movement zone 

(Dunniclif J. 1982). The standard inclinometer setup typically comprises a measuring probe, a cable, a guide tube, and a 

readout device. The probe is equipped with two wheels at each end, facilitating smooth movement along two sets of tracking 

grooves in the casing (Sombathy, Mendes, and Q. Huang 2021). The groove maintains the orientation of the probe along 

the casing and the casings are often oriented so that the A direction of the casing aligns with the maximum movement, while 

the B direction is orthogonal. The probe carries a gravity-sensing transducer. As shown in fgure 2 the probe measures 

the inclination angle. The absolute inclination of the casing can be calculated by multiplying each part length of L by the 

sine of the inclination angle as shown in the following equation, n is the number of parts along the casing (Stark and Choi 

2008): 

PnTotal defection = sin(θi)(Li)i=1 

Over time, inclinometer technology has advanced considerably. Recent innovations in Micro-Electro-Mechanical 

Systems (MEMS) have resulted in cost-efective, highly precise alternatives to traditional, expensive commercial systems. 

Additionally, there are fxed in-place inclinometers, which, although less commonly used due to their higher cost, ofer 

continuous and high-temporal resolution data. Inclinometers are the frst instrumentation option in unstable slopes as the 

movement type, direction, and magnitude can be observed even before the movements reach the ground surface. However, 

their performance depends on proper casing installation, careful data collection, and accurate data processing. For example, 

it is crucial to fx the bottom of the inclinometer below the slide plane to obtain reliable data. Two common approaches for 

calculating horizontal movement are diferential movement, which is the diference between two consecutive readings, and 

accumulative movement, which is the diference of each reading with respect to the bottom of the inclinometer. 
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Figure 2: Schematic diagram of (a) Inclinometer equipment (b)Principle of inclinometer operation (Stark and Choi 2008). 

2.2.2 Tilt Sensors 

Tilt sensors provide the same type of data as inclinometers but can have signifcantly greater precision depending on the 

model. Unlike inclinometers, tilt sensors provide the changes in inclination at a single point either on the ground surface or 

within a borehole (García, Hördt, and Fabian 2010). However, real-time monitoring and high temporal resolution can be 

achieved with these low-cost and easy to install sensors. High-resolution data from tilt meters has been shown to be efective 

at detecting rainfall-triggered landslides in previous studies (e.g., Uhlemann et al. 2016 and Qiao et al. 2020). However, 

tilt sensors are more efective in detecting rotational movements than translational movements (Aufič et al. 2023) and 

can be afected by environmental noise, such as vibrations from trafc or machinery and changes in temperature. Very 

high resolution tilt sensors commonly employ an electrolytic sensor which produces an output voltage proportional to the 

sensor’s tilt angle relative to gravity. As shown in Figure 3, when the sensor is inclined, the conductivity between electrodes 

a and c will be greater than between electrodes c and b (J. H. Lee and S. S. Lee 2011). 

Figure 3: Electrolytic tilt sensor mechanism: (a) Before tilt and (b) In the state of tilt (J. H. Lee and S. S. Lee 2011). 

With the development of MEMS technology, accelerometer-based tilt sensors have become more common. These 
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sensors can be manufactured in smaller and lighter models (Wang et al. 2022) than traditional tilt sensors and are commonly 

available at a signifcantly lower cost. These sensors work by measuring changes in the orientation of the gravity vector 

over time and are therefore efective at detecting large changes in tilt, but can be afected by other sources of acceleration, 

such as vibration. 

2.2.3 Extensiometer 

Extensiometers are low-cost tools that can measure relative displacements of two points. The base point should be located 

in a stable area to measure the displacement of unstable regions. Extensoimeters can be installed either in boreholes or on 

the ground surface (Aufič et al. 2023). Figure 4 shows a chain of extensiometers connected by extension rods and equipped 

with displacement transducers. Extensiometers are less commonly used for landslide monitoring than inclinometers. 

Figure 4: Slope Extensiometers used to measure strains in a large area (https://sisgeo.com/). 

2.2.4 Vibration Monitoring 

Recent studies have indicated that landslide monitoring can be performed by deploying acoustic emission (AE) monitoring 

systems with waveguides. An active waveguide consists of a steel tube installed within a pre-drilled borehole, with the 

annular space between the tube and the borehole wall backflled with granular materials, such as gravel or sand. When 

slope movement occurs, high-energy AE signals are generated from the interaction of the tube and the granular backfll and 

are transmitted through the steel tube to the ground surface (Figure 5). The key advantage of this system is its ability to 

provide near real-time alarms of landslide movement with high sensitivity at a low cost. However, the waveguide must be 

deeper than the potential shear zone and the movements must be signifcant enough to generate AE that can be detected over 

the ambient noise in the area (Dixon et al. 2018; Smethurst et al. 2017; Uhlemann et al. 2016). Alarms from these systems 

can be in the form of SMS messages, emails, or website updates. This technique is likely to be efective for monitoring 

shallow landslides in quiet areas, but unlikely to work along highways where slide planes can be several meters deep and 

ambient vibrations are signifcant. 
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Figure 5: AE monitoring system using an active waveguide (Dixon et al. 2018). 

2.2.5 Fiber optics 

Fiber optic sensing using Distributed Acoustic Sensing (DAS) is a recent advancement in vibration-based landslide moni-

toring. DAS measures vibrations by analyzing changes in the properties of light traveling through a fber optic cable. Unlike 

AE technology, DAS does not face limitations related to high-frequency elastic waves, making it a valuable tool for monitor-

ing landslides (Longoni et al. 2022). Fiber optic cables can also be used as strain or displacement sensors (e.g.,Iten, Puzrin, 

and Schmid 2008, Zheng et al. 2018) to determine landslide movements. These can provide very high resolution data, but 

the equipment required to carry out the measurements is still prohibitively expensive for routine landslide monitoring. 

2.2.6 Water Level Sensors 

A rising water table generates positive pore water pressure, which can trigger shallow landslides. The simplest and most 

common method for monitoring water levels involves automatic or manual measurement of groundwater using a water 

level logger, piezometer, or measuring tape in observation wells and boreholes (Dunniclif J. 1982). Several relatively low 

cost options are available for continuously recording water levels, including devices from Onset and Van Essen instruments 

that were used in this study (described in Chapter 3). Integrating water level sensors with other monitoring devices and 

communication technologies can provide good data to assist with landslide predictions and early warnings, but the data 

must be collected often enough to understand fuctuations over time. 

2.2.7 Pore Pressure Transducers 

Pore water pressure is most likely the frst indicator of failure in many slopes. Instability is often triggered by changes 

in efective stress, which are caused by increases in pore water pressure (Duncan, Wright, and Brandon 2014). Therefore, 
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monitoring pore water pressures using various types of piezometers or buried pore pressure transducers is common practice 

in landslide monitoring (Smethurst et al. 2017). Depending on the application, various types of sensors are used, ranging 

from those operating with hydraulic and pneumatic pressure to those utilizing vibrating wire technology. Field monitoring 

should be automated and include a sufcient number of measurement points to accurately capture the transient pore-water 

pressure profles resulting from heavy rainfall (A. B. Huang et al. 2012). Multi-point vibrating wire piezometers measure 

pore water pressure in multiple borehole points with a single cable. 

2.2.8 Water Content Sensors 

Soil water content data can improve the predictability of landslides. Dielectric measurements, resistivity measurements, 

and neutron scattering techniques are commonly used in water content sensors. These sensors can provide near real-time 

and continuous measurements of soil moisture. Certain sensors determine dielectric permittivity of the soil, which changes 

with its water content, by measuring the travel time of electromagnetic waves propagating through the soil. (Bittelli 2011). 

Resistivity-based sensors measure the electrical conductivity of the soil, which is directly related to the moisture content if 

the ion content in the soil is constant. Figure 6 illustrates some of the commercial sensors for measuring the water content 

of soil by measuring dielectric permittivity. Sensors 1 to 4 are Frequency Domain Refectometry (FDR). Sensors 5 to 

7 are Transmission Line Oscillation (TLO), consisting of two parallel rods that shape a transmission line. Sensors 8 to 

11 are Time Domain Refectometry (TDR), and sensor 12 is Time Domain Transmissometry (TDT) which is a technique 

analogous to TDR (Ferrarezi, Nogueira, and Zepeda 2020). 

Figure 6: Diferent types of commercial soil moisture sensors(Ferrarezi, Nogueira, and Zepeda 2020). 
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2.2.9 Suction Sensors 

All water movement in unsaturated soils is directly dependent on soil water tension, as water in both soils and on surfaces 

naturally moves from areas of higher potential to areas of lower potential. The majority of soil water fows occur at low water 

tensions, and only tensiometers allow for the direct and precise measurement of these small tensions in water. These sensors 

work by allowing the water in the soil to make contact with the water in a tensiometer through a porous ceramic material, 

which is permeable to water. This wetted porous ceramic creates an optimal pore/water interface, allowing the soil water ten-

sion to be directly transmitted to a pressure transducer, which provides a continuous signal (https://www.metergroup.com/). 

As soil becomes saturated due to heavy rainfall, the water tension measured by the tensiometer decreases indicating high 

water content. A rapid decrease in tension may indicate the loss of strength of soil (Godt, Baum, and Lu 2009). These 

sensors can provide direct measurements of soil suction, but often have a slow response time and are very prone to desat-

uration of the porous ceramic. While very useful for lab testing and carefully controlled feld monitoring, they are not as 

useful for the sites in this study. 

2.2.10 Shape Array 

The ShapeArray is a type of in-place inclinometer that consists of rigid stainless steel segments connected by fexible 

joints that allow movement. Each rigid segment is equipped with three MEMS accelerometers capable of measuring along 

three axes. Similar to inclinometers, the tilt of each segment, when multiplied by its length, provides the displacement. 

The resolution of a ShapeArray can be changed by adding or removing segments and when equipped with automated 

data collection, these devices can provide continuous measurements of deformations. ShapeArrays should be installed in 

vertical boreholes for landslide monitoring. Their high accuracy (0.02 mm/day) and high temporal resolution make them 

an excellent choice for monitoring landslides (Yan et al. 2021), but the high cost and data processing requirements limit 

their applicability to high priority sites. 

Fig 7 shows a diagram of a deployed shape array and tilt angle relative to gravity in a triaxial accelerometer. 

2.3 Remote Sensing Data for Landslide Monitoring 

Assessing the risk of landslides over a large region using manual and in-situ measurements is both costly and time-

consuming. Satellite-based data and other sources of gridded data products are now commonly available and can pro-

vide both high temporal and spatial resolution compared to ground-based measurements for landslide monitoring. Remote 

sensing technologies can provide critical data for tracking surface deformations, changes in land cover, and hydrological 

parameters, such as soil moisture and precipitation, which are essential for evaluating landslide prediction. While this is an 

area of active research, some of the key accomplishments in this area are reviewed here. 
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Figure 7: (a) A schematic illustration of a sensorized segments and joints. (b) Tilt angles and positions for a multi-segment 

shape array (https://www.measurand.com/). 

. 

2.3.1 Satellite-based Displacement Monitoring 

Creating landslide inventories through land surveying is often time-consuming, costly, and challenging. In recent decades, 

advanced remote sensing methods have been developed to assess land conditions and monitor landslides more efciently. 

Techniques such as Light Detection and Ranging (LiDAR), Interferometric Synthetic Aperture Radar (InSAR), and Difer-

ential SAR Interferometry (DInSAR) have been employed to monitor displacements over large areas, providing valuable 

data for landslide assessment and early warning systems (Ray, Jacobs, and Cosh 2010). 

2.3.2 Precipitation 

Traditional rainfall gauges are limited to point measurements and may not cover large or remote areas. Using high-resolution 

satellite data and data products that assimilated satellite data with ground-based measurements provide continuous rainfall 

data sources over wide regions, improving the ability to predict landslide risks in areas lacking ground-based data. When 

selecting an appropriate precipitation product, several factors must be considered, including the available period of data, 

temporal resolution, spatial resolution, and the agreement between ground-based measurements and the satellite product. 

As example, the tropical Rainfall Measuring Mission (TRMM) satellite, a joint mission between NASA and the Japanese 

Aerospace Exploration Agency (JAXA), provides rainfall measurements from November 1997 to March 2015 at varying 

temporal and spatial scales. After TRMM, the Global Precipitation Mission (GPM), also developed by NASA and JAXA, 

began in 2015, ofering more detailed rainfall estimates with higher spatial resolution ( 10 km2) and a temporal resolution 

ranging from half-hourly to monthly (Chikalamo et al. 2020). 
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2.3.3 Soil Moisture 

In the last decade, advancements in remote sensing for soil moisture retrieval have been signifcant (Brocca et al. 2012; 

Skulovich and Gentine 2023; T. A. Stanley et al. 2021). The Soil Moisture and Ocean Salinity (SMOS) mission by the 

European Space Agency (ESA) use a microwave sensor and the Soil Moisture Active and Passive (SMAP) mission by 

NASA combines radar and radiometer sensors to to provide direct measurements of soil moisture content in the top fve 

cm of soil. These near-surface measurements are used within a land surface model to provide an estimate of soil moisture 

at greater depths. Other microwave sensors have also provided accurate soil moisture data, including the Advanced Scat-

terometer (ASCAT) on MetOp-A and MetOp-B satellites, and the Advanced Microwave Scanning Radiometer (AMSR-E) 

and AMSR2 aboard Aqua and GCOM-W1 satellites (Brocca et al. 2012). 

2.4 Landslide Warning Approaches 

Landslide Early Warning Systems (LEWS) are gaining increasing attention due to their cost-efectiveness in protecting lives 

and property from landslide hazards. The primary aim of these systems is to alert responsible individuals and organizations 

so that preventive measures can be taken promptly, reducing the risk of severe damage. One of the key components of 

LEWS is the use of precipitation thresholds, which serve as indicators for potential landslide events based on rainfall 

intensity and duration. These thresholds are widely utilized in both regional and global landslide monitoring systems. 

(Fang et al. 2023; Guzzetti, Gariano, et al. 2020; Pecoraro, Calvello, and Piciullo 2019). An efcient Landslide Early 

Warning System (LEWS) must accurately identify triggering and non-triggering factors of landslides and integrate the 

key parameters that infuence these events. Hydrological factors, such as rainfall, soil moisture, groundwater levels, and 

pore water pressure, are often dominant triggers. It is essential to gather data for these parameters from the best available 

datasets, such as high-resolution satellite measurements and ground-based sensors, to improve the precision and reliability 

of the system. For issuing alert levels in a LEWS, it is critical to evaluate multiple parameters that contribute to slope 

instability. Among these, displacement is a key indicator of ongoing ground movement, while weather parameters like 

precipitation and antecedent rainfall are essential in assessing climate-triggered landslides. The integration of these factors 

enhances the reliability of warnings. Another important aspect of a LEWS is the lead time, which is the interval between 

when a warning is issued and the expected time of the forecasted landslide event. This interval is crucial, as it determines 

how much time responsible organizations, authorities, and afected individuals have to act in order to mitigate or reduce 

the potential damages (Pecoraro, Calvello, and Piciullo 2019). 

2.4.1 Precipitation Threshold-based Warning Approaches 

LEWS commonly depend on establishing thresholds diferentiating landslide events from non-landslide events (Conrad et 

al. 2021). Detailed information including topography, geology, and soil characteristics is often difcult to obtain for regions 

susceptible to landslides and it can vary signifcantly within a single study area. Consequently, predicting the likelihood of 

landslide occurrence has typically relied on analyzing past rainfall events that have led to landslides using factors like the 
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mean rainfall intensity (I), rainfall duration (D), and/or cumulative rainfall (E) from a storm event (e.g, Guzzetti, Peruccacci, 

et al. 2008). 

2.4.2 Global Landslide Warning Approaches 

One of the initial attempts to develop a global landslide threshold was done by Guzzetti, Peruccacci, et al. 2008. They listed 

internationally developed thresholds prior to 2008 and suggested a new global landslide threshold. D. B. Kirschbaum et al. 

2010 developed the Global Landslide Catalog (GLC), an online database that tracks rainfall-triggered landslides from 2007 

to the present by conducting a systematic inventory of landslides. By integrating satellite-based precipitation estimates from 

the Global Precipitation Measurement (GPM) mission with a landslide susceptibility map, they have provided a near-global, 

satellite-based platform that delivers a near real-time warning system for landslides across the globe. The advantage of the 

global landslide warning is the ability to forecast landslides in areas that lack sufcient information on landslide inventories 

and regional studies. 

2.4.3 Instrument-based Warning Approaches 

Instrument-based warning systems for landslides are designed to monitor and assess the stability of slopes through a net-

work of various ground sensors. These sensors gather crucial data to detect potential landslide events and issue timely 

warnings. The network typically includes a combination of geotechnical, meteorological, and geodetic measurements 

(Pecoraro, Calvello, and Piciullo 2019). Traditional feld observations, while valuable, are limited in their ability to detect 

real-time changes in landslide activity. Such readings are often taken periodically, which means they may miss critical 

shifts when they occur. Moreover, active landslides can pose signifcant safety risks to personnel, especially during storms 

or heavy rainfall, when movement is more likely, and visibility is reduced. Data gathering could not be done under these 

circumstances which are crucial for landslide predictions. This refects the importance of a near real-time monitoring 

approach in instrument-based warning systems. Ground-based remote monitoring systems include more than just feld 

sensors. They typically consist of data acquisition units to record sensor measurements. The system relies on remote 

telemetry (such as radio, satellite, or cell phone links) for transmitting data. While there may be a slight delay in updating 

the data—typically from minutes to hours—the term "near-real-time monitoring" is used to describe this system, which 

still refects feld conditions accurately enough to support decision-making in almost real-time (Reid et al. 2012). 
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3 Instrumentation Testing and Deployment 

3.1 Introduction 

One of the objectives of this research project was to evaluate diferent types of instruments available for slope monitoring and 

to compare results between instruments and with remote sensing data, such as those reviewed in Chapter 2. To accomplish 

this objective, instruments were deployed at two sites with a history of slope movements and in diferent tests conducted 

at Auburn University. This chapter describes the selected locations for the testing and presents comparisons between the 

instruments. 

3.2 Selected Sites 

The two sites selected for detailed monitoring are located on SR-219 near Centreville and SR-35 near Section and are shown 

in Figure 8. The location of the Laceys Spring landslide on US-231 is also shown for reference. The two sites were selected 

in consultation with ALDOT personnel in order to fnd locations where additional instrumentation was likely to be valuable 

for future slope stability studies and where there was historical data for comparisons. Each of the sites is described below 

followed by a discussion of the results of the monitoring completed so far. Monitoring of these sites will continue beyond 

this project. 

Figure 8: Locations of the two sites (SR-219 and SR-35) selected for monitoring in this study and the location of the US-231 

landslide. 

3.2.1 SR-35 near Section, AL 

The frst site selected for monitoring in this study is a an area of continuing instability on SR-35 in Jackson County (Figure 

9). Movements at this location have occurred on a regular basis for many years and are impacting lanes in both directions 
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Figure 9: Location of monitored site on SR-35 in Jackson County, north of Section, AL. 

(a) (b) 

Figure 10: Photos from the monitored site on SR-35 in Jackson County, north of Section, AL. Figure a (facing northeast) 

shows a vertical ofset in the roadway, where the scarp of the slide likely crosses the highway, and the drainage ditch on the 

south side of the road. Figure b shows the location of original instrumentation along the southbound guardrail. 

(Figure 10a). Prior to this study, the site was monitored with inclinometers and monitoring wells (Figure 10b), but they 

were read by hand, which limits the amount of data collected and requires lane closures to collect data. 

The monitored site on SR-35 is located near the contact between the Pottsville and Pennington formations (Szabo 

et al. 1988), which is the same as the large landslide that occurred on US-231 near Lacey Springs in 2020 (Xuan et al. 

2023). This geologic environment consists of shale, limestone, sandstone, and mudstone and slope stability problems in 
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the Pottsville formation are common (Montgomery et al. 2019). 

The research team evaluated the site and decided to install a rain gauge (Campbell TE525) to capture precipitation, a 

water level sensor to monitor one of the observation wells, a soil moisture sensor (Campbell CS655) to compare with the 

remote sensing based measurements of soil moisture, and a ShapeArray (Measurand) to monitor one of the inclinometer 

casings. Given the difculty with manual readings in this location, a data logger (Campbell CR6) with a cellular modem 

(CELL210) was selected to record and transmit the data at the site. The required power for the sensors and data logger 

is provided by a 55 amp-hour AGM battery coupled with a 30 watt solar panel (SolarTech). A SunSaver solar controller 

(SS-MPPT-15L) was used to manage charging of the battery. Both the data logger and battery were placed in plastic cases 

(Figure 11) mounted to a wood post, while the rain gauge and cellular antenna were mounted to a metal pole adjacent to the 

wood post. The fnal confguration of the monitoring system is shown in Figure 12 and photos from installation are shown 

in Figure 13. 

(a) (b) 

Figure 11: Photos of the wiring and confguration of the (a) data logger and cellular modem and (b) the battery and solar 

controller used at SR-35. 

3.2.2 SR-219 near Centreville, AL 

The second site selected for monitoring is along SR-219 in Bibb County near Centreville, Alabama. Figure 14 shows a 

map of the site with the locations of geophysical surveys that were conducted by Auburn University 2019 and boreholes 

that had been previously drilled by ALDOT. Locations B1 - B4 have inclinometers and wells, while B5 has a well and 

no inclinometer. A slow moving landslide was reported on the west side of the road in 2010 and has continued moving 

since that time. Cracking in the road suggests that the scarp of the landslide intercepts line R1 at the ground surface at 
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Figure 12: Photo of the fnished monitoring station at SR-35 near Section, AL. The rain gauge and cellular antenna are 

shown on the left, while the datalogger housing and solar panel are shown on the right with the graduate students from 

Auburn. 

(a) (b) 

Figure 13: Photos of the instrument installation process at SR-35, including (a) Stephanie Abbett (ALDOT) assisting with 

wiring of the water level sensor and (b) installation of the ShapeArray. 

approximately X=43 feet and continues past B4. 

The landslide site lies within the mapped portion of the Gordo formation of the Tuscaloosa group (Szabo et al. 1988), 
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although it is close to the boundary of the Gordo and Coker formation, which typically underlies the Gordo formation. The 

Gordo formation consists of massive beds of cross-bedded sand, gravelly sand, and lenticular beds of locally carbonaceous 

partly mottled moderate-red and pale-red-purple clay. The lower part of the Gordo formation is predominantly a gravelly 

sand consisting chiefy of chert and quartz pebbles The Coker formation consists of micaceous sand and clay with a few 

thin gravel beds containing quartz and chert pebbles (Szabo et al. 1988). 

The research team evaluated the site and decided to install a rain gauge (Onset RG3) to capture precipitation and 

multiple water level sensors in the existing wells (TD Diver). Cellular reception at this location is limited, so a manual 

data collection strategy was used with each instrument having a built-in datalogger. The manually read data loggers are 

less expensive than cellular-connected loggers and can be efective at sites that are regularly visited and have easy access. 

One of the challenges with deploying water level loggers was the use of 1" monitoring wells at both sites, while most of 

the standard water level loggers are meant for wells with inside diameters of 1.5" or 2". Using larger diameter wells would 

reduce the cost and increase the number of options available for water level loggers. Photos from installation are shown in 

Figure 15. 

Figure 14: Location of monitored site on SR-219 in Bibb County, south of Centreville, AL. 

3.3 Monitoring Data from SR-35 

Monitoring of SR-35 began in October 2023. The recorded data from SR-35 is shown in Figure 16. The water level logger 

at the site has not shown any water in the well and so data from that sensor is not included. The Shape Array has shown 
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(a) (b) 

Figure 15: Photos from SR-219 in Bibb County, south of Centreville, AL showing (a) installation of the rain gauge and (b) 

installation of one of the water level sensors in an existing observation well. 

no signifcant movement at the site with the largest change in displacement occurring in March 2024 following a relatively 

large one day storm. The movements are still very small (smaller than would be detected with a traditional inclinometer) 

and the storm fell below the warning thresholds being developed for this study (discussed in Chapter 4). The soil moisture 

sensor showed signifcant variations in soil moisture with storm events, but unfortunately stopped working in February 

2024. The fuctuations were consistent with remote sensing-based measurements and so the team decided that replacing 

the sensor was not required. 

The monitoring data up to this point has not shown any signifcant movement or high groundwater, so it is difcult to 

draw conclusions regarding the reliability or efectiveness of the instrumentation from this data alone. It is clear that the 

ShapeArray is able to detect much smaller movements than would be possible with traditional inclinometers, which gives 

hope that it will be able to provide advance warning of any potential slide. The reasons for not observing any water in 

the well are unclear at this time, but previous well readings at this site also showed dry conditions most of the time. It is 

recommended that monitoring of this instrumentation continue to compare with other observations at the site. 

3.4 Monitoring Data from SR-219 

Monitoring of SR-219 began in March 2023. Figure 17 shows the results from the water level loggers installed at SR-

219 compared with rainfall at the site. The water level loggers have shown a very rapid response to rainfall along with a 

seasonal pattern of lowering water levels that begins in the spring and continues through the summer. This is consistent with 

expected patterns for Alabama. The rain gauge data has largely been consistent with the remote sensing-based observations 

in pattern, but having the site-specifc data provides much more detailed measurements. 
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Figure 16: Data recorded at SR-35 during 2023 and 2024 from the rain gauge, soil moisture sensor, and Shape Array. The 

water level logger has not shown any water in the monitored well. 

No signifcant movements have occurred at SR-219 during the monitoring period, so conclusions cannot be drawn 

relating the water level observations with the patterns of movement. One key observation from this site is that the rapid rise 

and fall in water levels in response to rainfall cannot be observed with quarterly readings of wells. Deploying sensors like the 

TD Diver is relatively easy and inexpensive and can provide much more detailed information on water level fuctuations at 

site. The TD Diver has a built-in data logger, so although data can be recorded multiple times per day, it can be downloaded 

quarterly or even on longer intervals. This allows for fexibility in data collection, while still obtaining good resolution with 

time. 

3.5 Additional Instrumentation Testing at Auburn University 

The instruments deployed at the two sites have provided good data on current conditions, but without a signifcant land-

slide event it is difcult to draw conclusions about the ability of these devices to monitor instability. To supplement the 

feld deployments, several tests were conducted at Auburn University to evaluate the ability of diferent sensors to detect 

movements. This testing include shake table tests to evaluate accelerometers, standpipe tests to evaluate water level log-
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Figure 17: Data recorded at SR-219 during 2023 and 2024 from the rain gauge and water level loggers. 

gers, slope tests to evaluate soil moisture sensors and tilt sensors, and monitoring of internal deformations in a full-scale 

mechanically stabilized earth (MSE) wall (Okafor 2024). Many of the tests were used to select instruments for deployment 

and to refne designs of data collection and processing approaches and did not include quantitative comparisons of perfor-

mance. An exception to this is the MSE wall test, which was used to compare displacment measurements from a shape 

array with traditional inclinometer readings and automated tilt measurements. The results from the instrumented MSE wall 

are described below. 

3.5.1 Instrumented MSE Wall 

A full-scale MSE wall was constructed and tested (Figure 18) for a separate ALDOT project at the Advanced Structural 

Engineering Laboratory (ASEL) at Auburn University in May 2023 and is described by Okafor 2024. As part of this test, 

one of the ShapeArrays purchased for this project and three tilt sensors were installed on the MSE wall (Figure 19). The 

casings for the ShapeArray and inclinomenter were installed next to each other with about 150 mm spacing in between. 

Both casings were positioned at 0.6 m from the back of the facing panels into the reinforced mass (Figure 20). One of the 

tilt sensors was buried in the backfll in front of the inclinometer casings (Figure 19). The other two tilt sensors were placed 

near the face of the wall with one on the facing panel (exposed to the air) and one buried in the backfll right beyond the 

panel. The testing process involved defating bags in the foundation to simulate settlement and then surcharging the wall 
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with sand bags and then large concrete beams. After the end of the test, the wall was disassembled in stages. 

Figure 18: Photo showing the MSE wall at the end of load testing with all imposed surcharge loads (Okafor 2024). 

(a) (b) 

Figure 19: Photos from the MSE wall testing in the geotechnical chamber at ASEL showing (a) completed installation of a 

ShapeArray next to a traditional inclinometer casing and (b) the tilt sensor placed adjacent to the two inclinometer casings 

before being buried. 
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Figure 21 compares the ShapeArray results and the traditional inclinometer readings. Two ShapeArray lines are shown 

to demonstrate the efect of including a correction for settlement of the array in the casing. The corrected data (solid line 

in Figure 21) is in better agreement with the inclinometer readings and shows the importance of including this correction, 

especially for small displacements. The magnitudes of displacement were very small with the maximum value of about 

1 mm. This is far smaller than can be reliably detected with a traditional inclinometer in the feld, but it gives additional 

confdence in the reliability of the very small displacements being measured at SR-35 (Figure 16). 

Figure 22 shows the results from two of the tilt sensors during the testing phase. Both of these sensors were buried, 

Figure 20: Cross-section showing instrument locations within the test MSE wall (Okafor 2024). 

Figure 21: Change in displacement of the inclinometer casings as measured using traditional inclinometers (dots) before 

and after the testing of the MSE wall compared with the ShapeArray with and without corrections for settlement of the 

array in the casing. 
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but at diferent locations in the backfll. Sensor 12156 was buried right in front of the inclinometer casing, while 0E90D 

was buried right behind one of the MSE panels. A third sensor was placed on one of the wall panels, but the data from this 

sensor was too noisy to see any clear trends. Several lines are shown in Figure 22 to demonstrate milestones in the testing. 

Figure 22: Comparison of tilt sensor measurements for two of the buried sensors with signifcant milestones in the MSE 

wall testing program. Details of the testing program are provided by Okafor 2024. 

The tilt sensors showed very small changes in tilt during the testing phase (0.02 degrees for 12156 and 0.07 degrees for 

0E90D). This small change means that even low levels of noise (people walking near the sensor or temperature fuctuations) 

can make the data difcult to interpret. The buried sensors were less susceptible to these infuences and so burying the 

sensors in the feld is highly recommended. Sensor 12156 was directly in front of the inclinometer casing and so the 

tilt results can be compared with the inclinometers. Taking the 0.02 degrees of tilt and assuming using the height of the 

moving mass is approximately 14 feet (Figure 20), gives 0.059 inches of displacement, which is very consistent with the 

fnal inclinometer readings. Sensor 0E90D indicates larger displacements, but was located closer to the wall. Okafor 2024 

found that facing displacements were less than 1 mm (0.04 inches), so the tilt sensor may be overestimating the movement 

of the wall or the simple conversion of tilt to displacement is not accurate for this case. 

Overall, the testing results demonstrate that both the tilt sensors and the ShapeArray are performing very well under 

controlled conditions. The results from the sensors are comparable with those from traditional inclinometers, assuming 

proper corrections are made. The testing did show that the tilt sensors should be buried to reduce noise and do not give 

direct measurements of displacements. It is important to note that the MSE wall remained stable during the testing, so these 

comparisons are only for very small displacements. 
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3.6 Summary 

Diferent options for instrumenting unstable slopes were examined and applied to two high priority landslide sites located 

on SR-35 near Section, AL and SR-219 near Centreville, AL. In addition, testing was performed at Auburn University to 

evaluate and calibrate each of the selected instruments and to compare results using a ShapeArray, traditional inclinometer, 

and tilt sensor in a test on a near full-scale MSE wall. The experimental results demonstrated that all of the sensors can 

perform well in a laboratory setting, but the tilt sensors were very sensitive to noise levels and were not used in a feld 

deployment. 

At SR-35, an automated data collection strategy was employed to monitor precipitation, groundwater level, and slope 

movement through a ShapeArray. The equipment was installed on the shoulder of the road and has not shown any signifcant 

movement or groundwater within the monitored observation well. Data collection will continue in order to assess the ability 

of the instruments to detect movements at this site. 

At SR-219, a rain gauge and three water level loggers were deployed to record continuous measurements, but a manual 

data collection strategy was employed due to the limited cell service in this location. No signifcant movements have 

occurred at SR-219 during the monitoring period, so conclusions cannot be drawn relating the water level observations 

with the patterns of movement. One key observation from this site is that the rapid rise and fall in water levels in response 

to rainfall cannot be observed with quarterly readings of wells. It is antinicpated that this higher resolution data will allow 

for correlations to be drawn between observed movements and groundwater levels. 
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4 Triggering Thresholds for Landslide Sites using Precipitation and Soil Mois-

ture 

4.1 Introduction 

Chapters 2 and 3 has highlighted some approaches that can be used for site-level monitoring, but fully instrumenting each 

potentially unstable slope is cost prohibitive. In addition, collecting readings from these instruments may require signifcant 

efort if sites are in remote areas without reliable cellular connections. This chapter explores whether remote sensing data, 

such as precipitation and soil moisture can be used to predict when landslides are likely to occur by focusing on triggering 

thresholds. These thresholds defne a limit at which further precipitation is likely to lead to a landslide. Previous analyses of 

landslide triggering thresholds have primarily focused on large regional databases of landslides (e.g., D. B. Kirschbaum et 

al. 2010), but this study seeks to explore the use of ALDOT’s inclinometer database to evaluate these thresholds specifcally 

for use on Alabama highways. 

4.2 Background 

Precipitation intensity-duration (ID) thresholds are among the most common types used for landslide predictions, but mul-

tiple studies have highlighted limitations in the use of these thresholds, including many false positives. Bogaard and Greco 

2018 and Segoni et al. 2018 described the absence of thorough hydro-meteorological analysis in empirically-based rainfall 

intensity-duration thresholds for landslide initiation. They discussed the theory that rainfall serves as the fnal “push” for 

initiating landslides, while other factors such as soil moisture, infltration, storage, and drainage capacity play vital roles. 

Mirus et al. 2018 concluded that utilizing subsurface moisture conditions provides a more robust index for enhancing the 

precision of rainfall thresholds compared to cumulative antecedent rainfall. Several studies have considered proxies for the 

subsurface moisture and matric suction conditions in diferent forms to improve the typically empirical thresholds (Wicki 

et al. 2020) and reduce the number of false positive and true false negative points (Marino et al. 2019). 

4.3 Landslide Database 

Accurate and detailed landslide inventories are crucial for efective hazard assessment and mitigation strategies. However, 

compiling such inventories with precise temporal and spatial information poses signifcant challenges (D. B. Kirschbaum 

et al. 2010). In this study, the database was developed using inclinometer data provided by ALDOT. The ALDOT database 

consists of inclinometer readings obtained from areas that were previously identifed as unstable and had inclinometers 

installed to determine the magnitude and depth of sliding. Quarterly or more frequent readings were conducted using 

digital inclinometer probes, resulting in a dataset comprised of 151 inclinometers from 33 sites. 

Several sites were removed from the full database due to a lack of precise coordinates or inclinometers that were used 

to monitor something other than a landslide like a rockfall in Jackson County and a retaining wall in Franklin County. This 
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reduced the database to 118 inclinometers located at 24 sites. In addition to inclinometer data, we utilized Detailed Damage 

Inspection Reports (DDIRs) submitted for emergency assistance from the Federal Highway Administration (FHWA) in this 

study to enhance the landslide inventory in Alabama (Knights, Montgomery, and Carcamo 2020). Figure 23 shows the 

spatial distribution of landslide site from two diferent databases in the study region. The red points indicate data collected 

from the inclinometer database, and the blue points indicate the landslide points from the emergency relief reports. 

Figure 23: Spatial distribution of landslide sites from the processed inclinometer and emergency relief reports database. 

4.3.1 Data Processing 

An inclinometer monitors deformation perpendicular to the axis of the casing, ofering a profle of subsurface horizontal 

deformation. The depth at which shear movement is detected by a slope inclinometer indicates the location of the failure 

surface. This is a critical measurement for understanding slope instability, as it helps to pinpoint the exact layer or zone 

where the ground is moving (Stark and Choi 2008). ALDOT utilized biaxial inclinometers at the sites considered in this 
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study, which provide measurements in both the A- and B-directions every 2 ft (.61 m) for each reading date. Typically, the 

A-direction aligns with the direction of the maximum displacement. We extracted displacements along the inclinometer 

from DigiPro2 software (Durham Geo Slope Indicator) and created CSV fles for processing. 

Inclinometer readings are subject to various sources of errors, such as rotation errors of the sensor axis, errors in base 

readings, and variability in casing measurements near the ground surface. Mikkelsen 2003 reviewed the types of errors 

in inclinometer measurements and empirically estimated that the random error in inclinometer readings is approximately 

±0.16 mm (±0.006 in) for an individual reading. This random error accumulates at a constant rate over the entire length of 

the casing. Therefore, the accumulated random error for a 30-meter (100 ft) casing with readings taken every 0.5 meters 

would be approximately +1.24 mm (0.049 in) at the top of the casing. Random errors cannot be detected and resolved. 

In contrast, systematic errors accumulate arithmetically along the casing. For the same example of the 30-meter (100 ft) 

casing with readings taken every 0.5 meters (1.64 ft), the systematic error, with an increment of 0.11 mm (0.036 in) for each 

individual reading, would be approximately 6.60 mm (0.26 in) at the top of the casing. Unlike random errors, systematic 

errors can be resolved if the source of the error is identifed. One source of random error in the ALDOT inclinometer 

database was the erroneous readings at the base of the casing. We fltered erroneous readings by removing readings with 

signifcant changes in displacement (>2.5 mm) (>0.1 in) at the bottom of the casing. Furthermore, readings with spikes in 

displacement at a single depth without movement at other depths were assumed to be erronous and removed. Quantifying 

other sources of error can be more challenging. 

The most common analysis for inclinometer data involves plotting the relative shape of the casing compared to its initial 

condition. These cumulative lateral deformation versus depth plots are used to identify potential slide planes (Machan and 

Bennett 2008). We generated cumulative lateral deformation versus depth plots for all dates in a single profle for each 

A-direction and B-direction using Python 3.10 libraries: pandas, NumPy, os, and matplotlib. These profles were reviewed 

carefully to detect potential slide planes. Subsequently, we narrowed down the database to 60 inclinometers with identifable 

slide planes to proceed with our analysis of 20 sites. The slide planes were categorized as either single planes at a specifc 

depth or as multiple planes at various depths. Single planes were assumed to be no shallower than 10 ft (approximately 

3 meters). Inclinometers that displayed irregularities suggesting errors with unknown sources were excluded from further 

analysis. 

After fltering out potentially erroneous readings, casing displacements were extracted from the top of the slide plane. 

Instead of surface displacements, the displacements at the slide plane were utilized because they showed less variability 

throughout the readings. For defning the thresholds based on inclinometer movements, we plotted the cumulative distribu-

tion of the change in displacement at the top of the slide plane (Rahimikhameneh et al. 2024). Around half of the readings 

showed a change in displacement of less than 1mm (0.04 in), which likely falls within the instrument’s measurement un-

certainty. Conversely, 13% of readings exhibited displacements exceeding 5 mm (0.2 in). These thresholds are applied to 

diferentiate between landslide events (change in displacement larger than 5 mm or 0.2 inches between two readings) and 

periods of no minimal movement (change in displacment smaller than 1 mm or 0.04 in between two readings). However, 

events with displacements between 1 and 5 mm (0.04 in and 0.2 in) pose a challenge: they could indicate small landslide 

28 



events or be attributed to measurement errors. As no clear method exists to distinguish between these possibilities, such 

readings were excluded from this analysis. 

4.4 Methodology 

The precipitation dataset used in this project is the CPC Unifed Gauge-Based Analysis of Daily Precipitation over CONUS 

data provided by the NOAA PSL, Boulder, Colorado (https://psl.noaa.gov). The product has a coverage cell range of 28 

km by 28 km. Daily precipitation from CPC NOAA was grouped into discrete storm events by using a rainy-day threshold 

of 1 mm (0.04 in), as is commonly used for ID threshold development (e.g., Leonarduzzi, Molnar, and McArdell 2017). 

In the process of creating the intensity-duration thresholds, following a common approach, the cumulative rainfall for each 

storm event was calculated and then divided by the number of days the storm persisted. 

Soil moisture data from NASA Soil Moisture Active Passive (SMAP) (https://appeears.earthdatacloud.nasa.gov) were 

used for this project. The Level 4 product was used (Reichle et al. 2022), which has a 9-km by 9-km resolution. Specifcally, 

this study used the root zone moisture, which represents a vertical average of soil moisture between 0 to 100 cm, as this was 

found to be the most applicable to shallow landslides by Marino et al. 2019. Note that this depth is far shallower than the 

range of slide planes at the sites in the database and the scale of the measurement (9-km by 9-km) means that it is more of 

a regional measurement of average wetness instead of a site-specifc measure of volumetric water content. NASA SMAP 

data is available after March 31st, 2015. As an example, we extracted and presented CPS NOAA Precipitation and SMAP 

Soil Moisture data from January 3, 2020, in Figure 24 (a) and (b). 

We used Python (v3.11) and ArcGIS Pro (v3.0, ESRI) for data processing. The lack of information on landslide initi-

ation instances introduces uncertainty in distinguishing between triggering and non-triggering storm events. In our study, 

when a landslide event is detected between two inclinometer readings, we assumed the event with the largest cumulative 

precipitation triggered the landslide. The same assumptions were applied to the landslide database derived from emer-

gency relief reports. In the latter database, the largest cumulative precipitation within a month before the occurrence of the 

landslide was considered as a landslide-triggering storm event. The intensity was calculated by dividing the cumulative 

precipitation by the duration of the storm. We did not normalize the rainfall intensity by mean annual precipitation, as 

annual precipitation remains relatively consistent across Alabama, ranging from 127 to 152 cm (50 to 60 inches) per year. 

The exception is the Mobile area, where precipitation levels difer; however, none of the studied sites are located in this 

region. 

As previously mentioned, many sites had multiple installed inclinometers. Rather than analyzing each inclinometer 

independently, inclinometers at the same site were grouped to defne a failure status for the entire site. Reading intervals 

where none of the inclinometers at a site recorded movements meeting the criteria for a landslide (change in displacement > 

5 mm or 0.2 in.) were categorized as stable and each inclinometer was analyzed separately as a non-landslide point. When 

a landslide was detected in at least one inclinometer at each monitoring site, the entire site was categorized as landslide for 

that reading interval. An example of the classifcation of inclinometer readings into landslide and non-landslide intervals is 

shown in Figure 25 for landslide sites on SR-69 and SR-5. The inclinometer readings are also compared with precipitation 
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(a) (b) 

Figure 24: Example of extracted data from January 3, 2020 showing (a) CPS NOAA Precipitation (mm in one day) and (b) 

SMAP Soil Moisture (volumetric moisture content). The Alabama boundary fle was obtained from USGS (2023). 

and soil moisture measurements at those locations. 

We used the soil moisture measured by SMAP at each site at on the frst day of the storm and divided it by the average 

soil moisture of that point between 2015 to 2021. This is referred to as the normalized soil moisture and represents an 

index of the moisture conditions in the vicinity of the slide area relative to the average conditions at that same location. A 

normalized soil moisture of 1.0 represents an average condition for that location, while a value less than 1.0 is drier than 

average and greater than 1.0 is wetter than average. This normalization was performed in order to compare soil moisture 

conditions across the state without having to deal with uncertainty related to the actual moisture values. 

4.5 Results 

The relationship between maximum accumulated rainfall, observed movements, and normalized soil moisture is shown in 

Figure 26 for landslide and non-landslide reading intervals. The landslide points are situated within the red box, character-

ized by changes in movements larger than 5mm or 0.2 in, while non-landslide points are found within the blue box, where 

changes in movements are less than 1mm or 0.04 in. Values falling between these two thresholds were excluded, as they 

were previously labeled as unknown events. 

The data in Figure 26 shows signifcant scatter, but some approximate trends of both precipitation and soil moisture 
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(a) 

(b) 

Figure 25: Time series of inclinometer displacement (red star indicates landslide), daily rainfall (purple bars), and soil 

moisture (SMAP L4, blue line) for (a) SR-69 Inclinometer 13002 and (b) SR-5 Inclinometer 13002A. 

and large movements can be observed.The average normalized moisture content for events with displacements greater than 

5 mm (0.2 in) is 1.05, while the average value for events with displacements less than 1 mm (0.04 in) is 0.91. For movements 
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greater than 20 mm (0.78 in), all but one point had above-average moisture contents (normalized value greater than 1.05). 

This is in line with the results presented by Bogaard and Greco 2018 and demonstrates the importance of soil moisture 

conditions in landslide triggering. 

Figure 26: The relation between the maximum accumulated precipitation in a single storm and the change in displacement 

in the inclinometer over that reading interval is shown by the points. The color of the points represents the normalized soil 

moisture content at the start of the storm. 

4.6 Comparison with Existing Triggering Thresholds 

We conducted a comparison of storms that triggered landslides, utilizing data from the processed inclinometer database 

and emergency relief reports, against previously established thresholds by Godt, Baum, and Chleborad 2006;Guzzetti, 

Peruccacci, et al. 2008; Marino et al. 2019 to assess their accuracy for application across the state of Alabama. Figure 

27(a) illustrates that the Godt, Baum, and Chleborad 2006 curve provides a good ft for predicting the majority of landslide 

points from the inclinometer data. Out of 84 points, 68 landslide points (blue color) were correctly predicted by the Godt, 

Baum, and Chleborad 2006 threshold, while 16 points (red color) fell below the curve indicating a false negative point. 

It is important to note that the role of normalized soil moisture in improving the prediction was not taken into account 

in this step, as the points belong to the entire database spanning from 2001 to 2021 and SMAP has data only after 2015. 
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Figure 27(b) illustrates the database of emergency relief reports compared with the previously established thresholds. The 

total number of landslide points derived from this database is 164. Of these, 132 landslide points were correctly predicted 

by the Godt, Baum, and Chleborad 2006 curve (blue points) while only 8 points were false negatives (red points). These 

points often have very low rainfall Intensity. Approximately 80% of the landslide events in both databases were correctly 

predicted by the Godt, Baum, and Chleborad 2006 threshold. 

4.6.1 Landslide points Considering Soil Moisture 

We integrated the soil moisture and precipitation data to evaluate the efectiveness of using soil moisture measurements 

to understand triggering patterns. The soil moisture value at the start of each storm was determined, normalized, and 

then assigned to both landslide-triggering and non-landslide-triggering events. To evaluate the signifcance of normalized 

soil moisture, we defned fve categories of normalized soil moisture values ranging from 0.2 to 1.75. Values between 

0.2 and 0.95 indicate drier-than-average moisture conditions, while values from 1.05 to 1.75 suggest wetter-than-average 

conditions. Values between 0.95 and 1.05 were considered to be approximately average. Figure 28 shows the results for 

the landslide events with the symbol for each point representing the normalized moisture content measured on the frst day 

of the storm. Figure 28(a) shows that three points from the inclinometer database fall below the threshold established by 

Godt et al. They have average and above-average moisture content. Figure 28(b) shows that there are no points under the 

curve for the emergency relief reports database and all points have a normalized soil moisture condition above 1. It is worth 

noting that the number of points has been reduced compared to Figure 27, as soil moisture measurements are only available 

after March 31, 2015. 

(a) (b) 

Figure 27: Comparison of the landslide points with previously developed triggering thresholds for the (a) inclinometer 

database from this study and the (b) emergency relief (DDIR) database from Montgomery et al. 2019. 

33 



(a) (b) 

Figure 28: Comparison of the landslide points grouped by normalized soil moisture with previously developed triggering 

thresholds for the (a) inclinometer database from this study and the (b) emergency relief (DDIR) database from Montgomery 

et al. 2019. 

. 

4.6.2 Non-Landslide Points 

Figure 29 presents data for non-slide events (less than 1 mm or 0.04 in displacement), alongside three ID thresholds devel-

oped previously by Godt, Baum, and Chleborad 2006, Guzzetti, Peruccacci, et al. 2008, and Marino et al. 2019. There are 

a relatively large number of false positive points (non-landslide points falling above the triggering threshold) in the incli-

nometer database, which is consistent with previous studies. Figure 29 shows that the Godt, Baum, and Chleborad 2006 

threshold would give 107 false positive (false alarm) points out of 825 non-landslide points in the inclinometer database 

(false positive rate of 13%). Examining the soil moisture conditions of the false positive points ofers a potential path 

towards reducing the number of false alarms that would be triggered with these thresholds. Approximately 68% of false 

positive points have moisture content drier than average (less than 1), while Figure 28 showed that the false negative points 

all had at or above average moisture conditions. 

To further examine the relationship between normalized soil moisture and landslide triggering, we plotted histograms 

of normalized soil moisture for false and true positive events (Figure 30). Figure 30a shows the distribution of false positives 

is centered at a normalized soil moisture of 0.8 - 0.9, while the true positives (Figure 30b) tend to have higher (>1.0) 

normalized soil moisture conditions. Notably, there are no true positive events with normalized soil moisture values below 

0.65 and few false positive events with normalized moisture contents greater than 1.2. Taken together, these fgures suggest 

that threshold curves that incorporate moisture conditions may ofer improved capability to determine if a storm will trigger 
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Figure 29: Non-landslide events (displacements less than 1mm or 0.04 in) alongside three previously developed thresholds 

by Godt, Baum, and Chleborad 2006, Guzzetti, Peruccacci, et al. 2008, and Marino et al. 2019. 

a landslide. Future studies could consider directly incorporating an index like normalized soil moisture into the triggering 

thresholds to reduce the rate of false positives. 

(a) (b) 

Figure 30: Histogram of normalized soil moisture values for (a) false positives and (b) true positive points from the trig-

gering threshold by Godt, Baum, and Chleborad 2006. 
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4.7 Summary 

This chapter described the creation of a new database of landslide and non-landslide events based on inclinometer readings 

collected at sites with unstable slopes around Alabama. Extensive processing was done on the inclinometer data to eliminate 

erronous or unreliable readings and to extract the changes in displacment at the slide plane. After processing, landslide 

events were defned by a change in displacement exceeding 5 mm (0.2 in) between two inclinometer readings, while non-

landslide events were identifed by changes in displacement less than 1 mm (0.04 in). Readings falling between these two 

limits were not considered in the analysis as they could not be defnitively categorized as either landslide or non-landslide 

with the available information. 

The inclinometer database was compared with measured precipitation data from NOAA and normalized soil moisture 

from NASA’s SMAP Level 4 dataset. The normalized soil moisture served as an index of the average moisture conditions 

in the vicinity of the landslide site. The landslide database from emergency relief slides described by Montgomery et al. 

2019 was also included in the analysis. 

The two databases were compared with diferent triggering thresholds and the threshold proposed by Godt, Baum, 

and Chleborad 2006 was found to accurately predict approximately 80% of the landslide points across the two databases. 

Similar to previous studies, all of the examined thresholds had a large number of false positive points when examining the 

non-landslide data (i.e., non-landslide points falling above the threshold). These are a problem as they would represent 

false alarms that might erode confdence in the use of the thresholds. 

The normalized soil moisture data appears to be efective at distinguishing between storms that are likely to produce a 

landslide or not. Specifcally, 70% of the inclinometer dataset and all points within the DDIR database exhibited normalized 

soil moisture values above 1 indicating that they occured during wetter than average conditions. Similarly, 68% of the points 

identifed as false positives (i.e., predicted landslides that did not occur) had normalized soil moisture values below 1. This 

pattern underscores the potential correlation between higher soil moisture levels and the likelihood of landslide occurrence 

and should be explored during the development of future triggering thresholds. 

This chapter has focused on using recorded precipitation to understand landslide triggering, which is very useful for 

analyzing observations, but has limited value for forward predictions as the true rainfall is not known ahead of time. It 

would be more useful to base predictions on forecast data, which would be available before a landslide occurs in order 

to provide warning to potential stakeholders. The lessons learned from this study will be applied to the development of 

warning thresholds using forecast data in the next chapter. 
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5 Developing a Warning System for Unstable Slopes 

5.1 Introduction 

The previous sections have highlighted some of the options for monitoring unstable slopes and demonstrated how precipita-

tion and soil moisture measurements can be combined to identify storms that are likely to cause previously unstable slopes 

to move. This chapter will focus on presenting the development of a warning system for potential movements at unstable 

locations and provide recommendations for monitoring future landslide sites. The warning system, along with tools to 

view data from monitored sites, have been implemented into a web-based portal using ArcGIS to allow for sharing the 

relevant data with stakeholders. The research team will work with ALDOT to implement these tools into future landslide 

assessments. 

5.2 Methodology for a Slope Warning System using Forecast Data 

Traditionally, precipitation-based thresholds for landslide triggering have used observed precipitation recorded during either 

experiments or estimated at sites with observed landslides. This process was used in Chapter 4 to examine how well existing 

thresholds predict observations in the ALDOT landslide database. This approach was shown to be very efective for past 

observations, but its usefulness is limited for providing warnings for future movements as these thresholds rely on knowing 

how much precipitation occurred leading up to the landslide. 

To overcome these limitations, this chapter develops a second set of thresholds using a combination of observed 

precipitation, precipitation forecasts, and normalized soil moisture data. This allows for predictions of slope movements 

to be made on a daily basis using forecast data. Other studies have used forecast data to issue landslide warnings (e.g., 

Khan et al. 2022) but have focused on large-scale regions and are not as useful for understanding potential movements at 

individual sites. This chapter is focused on developing a warning system that is specifc to unstable slopes along Alabama 

highways and, therefore, considers only data from these sites. Applicability to other locations and other types of slopes will 

be explored in future studies. 

Several data sources were identifed for use in the warning system. These include both forecast and recorded precipi-

tation from NOAA and the normalized soil moisture data described in Chapter 4. A brief description of each data source 

and the processing steps taken are described below followed by a discussion of the analysis and recommendations for the 

warning system. 

5.2.1 Forecast Data 

Forecast precipitation information from the NOAA Weather Prediction Center was selected for use in the warning system as 

these forecasts are produced daily and have been extensively validated (e.g., https://www.wpc.ncep.noaa.gov/html/hpcverif.shtml). 

The specifc product used was the WPC Quantitative Precipitation Forecasts (QPFs) for 7-day precipitation. Historical fore-
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casts were available for a period from 2017 to 2021, which allowed for comparisons with the landslide data. An example 

of the output from the WPC QPF is shown in Figure 31 for December 25, 2019 and September 11, 2024. The forecast for 

December 2019 corresponds to the approximate date when movements at the Lacey’s Spring landslide on US-231 likely 

began. This date falls between two inclinometer readings, but does correspond to the frst warning that would have been 

issued using the approach outlined in this chapter. Both forecasts in Figure 31 show areas of signifcant precipitation (no-

tably around the area of US-231 and SR-35 in the December 2019 forecast), but neither shows any areas with predictions 

exceeding 5 inches (127 mm) of predicted precipitation. It is important to remember that this is a cumulative forecast over 

a seven day period and not a daily intensity as was described in the previous chapter. Therefore, the thresholds from chapter 

4 cannot be directly applied to these data. 

(a) (b) 

Figure 31: Map of Alabama showing the NOAA WPC Quantitative Precipitation Forecast (QPF) in inches. Figure (a) is 

for a forecast period covering December 25 - 31, 2019, while Figure (b) is for a forecast period covering September 11 -

17, 2024. 

To process the data for the warning framework, daily forecast products were downloaded in a shapefle format as 

precipitation in inches. The Python package geopandas was used to extract data for each inclinometer location from the 

shapefles. This process is repeated for each day in the monitoring period to produce a table with seven-day precipitation 

forecasts for each site on each day. As previously discussed, the seven-day cumulative forecast was used for this study. 

Other forecast products were available, but this was the only forecast product where a complete set of historical forecasts 

was available to compare with the database developed in Chapter 4. Future work could consider other forecast products or 

even attempt to use multiple forecasts (i.e., 24, 48, and 96 hour forecasts), but other data sources would need to be identifed 

to develop warning thresholds. 
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5.2.2 Recorded Precipitation 

Precipitation datasets were retrieved from the NOAA Climate Prediction Center (CPC). Specifcally, the CPC Unifed 

Gauge-Based Analysis of Daily Precipitation was selected for this study, which is the same dataset that was used in Chapter 

4. This product provides monthly and daily gridded surface precipitation data with a spatial resolution of 0.25 degrees 

latitude by 0.25 degrees longitude over the continental United States. An example of the output from the CPC daily pre-

cipitation data for December 24, 2019 and September 10, 2024 is shown in Figure 32. These dates correspond to the day 

before the forecast periods for Figure 31. The data from December 24, 2019 shows several areas of signifcant rainfall with 

US-231 recording 2 inches (50 mm) of rain in a single day, while the recorded rainfall from September 10 shows little to 

no rain was recorded in Alabama. 

(a) (b) 

Figure 32: Map of Alabama showing the recorded rainfall in inches on (a) December 24, 2019 and (b) September 10, 2024. 

The data fles for the recorded precipitation were downloaded from the NOAA CPC as NetCDF fles which were 

opened and processed in ArcGIS Pro Software. First, the NetCDF fles were converted to rasters, from which values were 

extracted for each of the site locations. This process was repeated for each day in the monitoring period and accumulated 

precipitation values were totaled for the past seven days. The output from this processing was a table with accumulated 

precipitation values for the past seven days for each site. 

5.2.3 Normalized Soil Moisture 

As discussed in Chapter 4, the soil moisture measurements from NASA’s SMAP instrument are useful for monitoring 

the average moisture conditions in diferent regions. The specifc soil moisture values may not be accurate, but they 
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can be converted to an index by normalizing them by the average soil moisture from SMAP for that location. This 

was done in Chapter 4 and was shown to help reduce false positives when using existing thresholds. For the warn-

ing system, daily values of root zone soil moisture were downloaded from the Level 4 SMAP data using appEEARS 

(https://appeears.earthdatacloud.nasa.gov). This allows for direct extraction at specifc points (i.e., landslide locations), but 

the same data are also available in raster format for studying regional patterns. An example of the normalized soil moisture 

conditions in Alabama on December 24, 2019 and September 9, 2024 are shown in Figure 33. This shows the signifcant 

contrast in normalized moisture conditions in the winter versus the late summer in Alabama. It is also interesting to note 

that the area near both the US-231 slide and the SR-35 slide were experiencing signifcantly wetter than average conditions 

(normalized values near 1.4) on December 24, 2019. 

(a) (b) 

Figure 33: Map of Alabama showing the normalized soil moisture conditions on (a) December 24, 2019 and (b) September 

9, 2024. 

5.2.4 Developing Warning Thresholds 

The data from the sources described above were integrated and compared with observations of slope instability from the 

inclinometer database described in Chapter 4. Fifteen sites from Chapter 4 had inclinometer readings that fell within the 

period of available forecast data (2017-2021). For each forecast day (e.g., December 8) at each site, the precipitation over 

the previous seven days (December 1-7 for this example) was summed to get the accumulated precipitation prior to the 

forecast day. This accumulated value was added to the forecast value to get the total precipitation for comparison with the 

thresholds. The normalized soil moisture from the day before the forecast (December 7 for this example) was also recorded. 

The goal of the warning thresholds was not to predict which specifc storm would lead to a failure, but rather to provide 
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some advance warning of when a failure was likely to occur at a site. To meet this goal, the research team selected a window 

of 90 days prior to a failure to attempt to issue a warning. This window was selected based on the common ALDOT reading 

intervals of the inclinometers at active landslide sites (every 3 months). All forecast days were divided into one of three 

categories. The frst category was for forecast days where no movement larger than 1 mm (0.04 in) was observed in the 

next 90 days in any of the inclinometers at the site. This was the "no failure" category and used the same criteria as Chapter 

4. The second category was for forecast days within 90 days of an inclinometer reading interval with movements larger 

than 5 mm (0.2 in) at the site. This was the "failure category" and used the same criteria as Chapter 4. The third category 

included days where inclinometer readings at the site fell between these two limits and it was not possible to determine if 

a failure had occurred or not. These data were excluded from the analysis. 

Figure 34 shows the total precipitation (sum of accumulated over the previous seven days and forecast for the next 

seven days) and normalized soil moisture (1.0 indicating average conditions for that site) for forecast days in the landslide 

database. The warning was issued when either or both of the following criteria were met: the combined 7-day antecedent 

rainfall and 7-day forecast exceeded 160 mm, or the normalized soil moisture on the current day was greater than 1.5. Figure 

34a shows the non-failure category (meaning that no failure was observed in the 90 days following this day), while Figure 

34b shows the days that fall within 90 days of a failure. This fgure shows there is a large amount of overlap between the 

two categories (failure and non-failure) as was observed in Chapter 4. One diference is there are no non-failure points at 

normalized soil moisture values greater than 1.5 and there are very few non-failure points with a total precipitation greater 

than 9 inches (230 mm). 

Figure 34: Comparison of the proposed warning thresholds for total (accumulated and forecast) precipitation and normal-

ized soil moisture for (a) forecast days without a failure within 90 days and (b) forecast days with a failure occurring within 

90 days. The squares indicate forecast days when a warning would have been issued. 

Figure 34 also shows the proposed warning thresholds developed for this study. These thresholds were determined 
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by attempting to minimize false positive warnings, while maximizing the number of failures where some warning would 

have been provided. The proposed total precipitation threshold is 6.3 inches (160 mm) and the proposed normalized soil 

moisture threshold is 1.5. The symbols in Figure 34 indicate the points where a warning would have been issued if these 

thresholds had been in place at the time. 

5.2.5 Comparison of Proposed Warning Thresholds with Database 

There are more than 5,500 forecast days in the database where no failure was observed within the next 90 days (Figure 34a) 

and a warning would have been issued on only 62 (1.1%) of those days representing a low false positive rate. Future work 

could examine whether site-specifc adjustments to these thresholds could further lower this false positive rate, but this was 

not considered necessary at this stage. 

Figure 34b shows the 211 warnings that would have been issued on days where a failure was observed within 90 days 

of the warning. This means that a total of 273 warnings would have been issued during the four year study period across 

the 15 sites. Approximately 77% of the warnings had a failure occur within 90 days of the when the warning would have 

been issued. 

There are a lot of forecast days in Figure 34b where no warning would have been issued, but these do not necessarily 

represent missed warnings as a warning does not need to be issued on every day leading up to a failure. Rather, it is 

important to understand how many of the observed failures in the database would have had no warning issued. Of the 250 

individual inclinometer readings in the database, 36 had a change in displacement larger than 5 mm (0.2 inches) as shown 

in Figure 35. A warning would have been issued within 90 days of the reading interval for 25 of these failures ( 70%). 

Of the 11 failures where no warning would have been issued, only 4 had a change in displacement larger than 0.3 inches, 

which indicates that many of the missed warnings would have been unlikely to cause signifcant damage. 

Overall, the proposed thresholds have a low false positive rate for non-failure cases (approximately 1%) and were able 

to provide a warning prior to 70% of the observed failures. This indicates that the proposed thresholds are doing a very 

good job of distinguishing between conditions (combination of precipitation and soil moisture) that are likely to lead to 

signifcant movement of unstable slopes along Alabama highways. There are a large number of cases in the database where 

the inclinometers provided displacements that could not be categorized as a failure or a non-failure (approximately 40% of 

the readings) and so these readings are not included in this comparison. 

5.3 Recommendations for Implementing Warning Thresholds 

The warning thresholds described above have been implemented in an automated ArcGIS program, which obtains the 

forecast data, recorded precipitation, and soil moisture directly from NASA and NOAA and performs the necessary calcu-

lations to determine which areas of the state pass the warning thresholds for either total precipitation or normalized soil 

moisture. These data can be updated daily in order to monitor changes in conditions over time and provide guidance to 

maintenance personnel that a visit to a site may be needed to clear drainage features, seal cracks, and perform other pre-
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Figure 35: A comparison of the change in displacement from inclinometer readings from failure locations with maximum 

total precipitation (sum of 7-day accumulated and forecast) during the reading period. Diferent symbols are used to indicate 

whether a warning would have been issued within 90 days of the reading interval or not. 

ventative maintenance that may reduce the likelihood of slope movement. Combining these warning thresholds with the 

landslide triggering thresholds from Chapter 4 would allow for identifcation of locations where movements are likely to 

have occurred and where damage inspections may need to be performed. 

An example of applying the warning thresholds to the Lacey’s Spring landslide on US-231 is shown in Figure 36. 

Cracking in the southbound lanes was reported in February 2019, which lead to the installation of the inclinometer shown 

in the fgure. The major landslide occurred following heavy rain in February 2020. The inclinometer readings are compared 

with the relevant data for the warning thresholds in the fgure. Precipitation data was only collected for the period with 

inclinometer readings, so it could not be used to assess if a warning would have been issued prior to February 2019, but 

the normalized soil moisture was available and was above the threshold of 1.5 in January 2019. This would have led to the 

frst warning being issued before the site moved enough for cracks to form in February 2019. A series of warnings would 

have also been issued in February 2019 based on the high soil moisture conditions and again in December 2019 before 

the inclinometer readings that indicated movement patterns had changed. A series of warnings would have been issued 

between December 2019 and February 2020 in the lead up to the observed failure. 

This example has the beneft of hindsight in knowing when the large failure occurred, but the comparison of the 

thresholds across the database (Figure 35) show similarly good results in providing warning before large movements occur. 

The only way to know if these thresholds can perform as well in the future is to begin testing them at sites with a history 

of slope movements to see if they can provide useful warnings of future movements. Auburn researchers will work with 

ALDOT to begin this implementation and future studies can assess the data collected during this implementation phase to 

determine if updates are needed. 
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5.4 Summary 

This chapter reanalyzed the landslide database developed in Chapter 4 using both accumulated antecedent precipitation and 

forecast precipitation, along with normalized soil moisture. This approach is able to provide predictions of future landslide 

events based on current forescasts rather than evaluating triggering based on past events as was done in Chapter 4. The 

objective of the warning thresholds would be to allow time for ALDOT personnel to visit a site and collect measurements, 

inspect for damage, and potentially perform preventative maintenance, such as cleaning drainage features or sealing cracks. 

To develop the warning thresholds, an automated data retrieval and processing tool was developed in ArcGIS to obtain 

recorded precipitation during the previous seven days, forecasted precipitation for the next seven days, and the current 

normalized soil moisture conditions. The recorded precipitation and normalized soil moisture were taken from the same 

sources as Chapter 4, while the forecast data was obtained from NOAA’s Weather Prediction Center. These data were 

obtained for each site and each day in the inclinometer database for a period between 2017 and 2021. This included 250 

individual inclinometer readings with 36 landslide events. Each day was treated as an independent opportunity to provide 

Figure 36: Example of applying the proposed warning thresholds to the Lacey’s Springs landslide on US-231. 

44 



a warning of a potential slope failure and various thresholds for both total precipitation (summation of the accumulated 

precipitation during the previous seven days and forecast precipitation for the next seven days) and normalized soil moisture 

were evaluated. The analysis showed that using a total precipitation threshold of 6.3 in (160 mm) and a normalized soil 

moisture threshold of 1.5 for issuing a warning gave a low rate of false positives ( 1%), while providing a warning prior to 

70% of the observed failures. 

The use of these thresholds was demonstrated with an analysis of the data from the US-231 Lacey’s Spring landslide. 

The proposed thresholds would have led to warnings frst being issued in January 2019 before cracking was observed in the 

roadway and again in February 2019 and December 2019 as the rate of movement was increasing. The performance of the 

thresholds for future events can only be evaluated through the implementation of these warnings as part of a geotechnical 

health monitoring plan. Recommendations for this implementation are provided in Chapter 6. 
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6 Conclusions and Recommendations 

6.1 Summary 

This study focused on providing data and recommendations to improve the monitoring and assessment of landslides along 

Alabama highways. Many options are available for monitoring landslides including visual observations, automated or 

manually read instruments, and remote sensing data. An ideal monitoring approach will have high spatial and temporal 

resolution, low cost, simple data processing, and high durability (Smethurst et al. 2017), but it is rare to be able to meet all of 

these objective. Chapter 2 reviewed available monitoring options and provided a discussion of some of the advantages and 

disadvantages of each. Current landslide monitoring used by ALDOT relies primarily on manually read inclinometers and 

observation wells, which provides direct measurements of landslide behavior, but has low temporal resolution (commonly 

readings are taken quarterly) and observations that are limited to locations with a borehole. This study explored the use 

of other monitoring tools through both literature review and testing at Auburn University, including ShapeArrays and tilt 

sensors for monitoring movement and water level loggers for continuously recording groundwater levels. In addition, 

diferent sources of remote sensing data were explored to expand the spatial resolution beyond instrumented locations. 

This study deployed instruments at two high priority landslide sites located on SR-35 near Section, AL and SR-219 

near Centreville, AL as described in Chapter 3. At SR-35, an automated data collection strategy was employed to monitor 

precipitation, groundwater level, and slope movement through a ShapeArray. The equipment was installed on the shoulder 

of the road and has not shown any signifcant movement or groundwater within the monitored observation well. Data 

collection will continue in order to assess the ability of the instruments to detect movements at this site. 

At SR-219, a rain gauge and three water level loggers were deployed to record continuous measurements, but a manual 

data collection strategy was employed due to the limited cell service in this location. No signifcant movements have 

occurred at SR-219 during the monitoring period, so conclusions cannot be drawn relating the water level observations 

with the patterns of movement. One key observation from this site is that the rapid rise and fall in water levels in response 

to rainfall cannot be observed with quarterly readings of wells. It is anticipated that this higher resolution data will allow 

for correlations to be drawn between observed movements and groundwater levels. 

Chapter 4 described the creation of a new database of both landslide and non-landslide points based on inclinometer 

readings collected at sites with unstable slopes around Alabama. Extensive processing was done on the inclinometer data to 

eliminate erroneous or unreliable readings and to extract the changes in displacement at the slide plane. After processing, 

landslide events were defned by a change in displacement exceeding 5 mm (0.2 in) between two inclinometer readings, 

while non-landslide events were identifed by changes in displacement less than 1 mm (0.04 in). Readings falling between 

these two limits were not considered in the analysis as they could not be defnitively categorized as either landslide or 

non-landslide with the available information. The inclinometer database was compared with measured precipitation data 

from NOAA and normalized soil moisture from NASA’s SMAP Level 4 dataset. The normalized soil moisture served as 

an index of the average moisture conditions in the vicinity of the landslide site. The landslide database from emergency 

relief slides described by Montgomery et al. 2019 was also included in evaluations. 
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Chapter 5 reanalyzed the landslide database developed in Chapter 4 using both accumulated antecedent precipitation 

and forecast precipitation, along with normalized soil moisture in an attempt to develop warning thresholds. This approach 

is able to provide predictions of future landslide events based on current forecasts rather than evaluating triggering based on 

past events as was done in Chapter 4. The objective of the warning thresholds would be to allow time for ALDOT personnel 

to visit a site and collect measurements, inspect for damage, and potentially perform preventative maintenance, such as 

cleaning drainage features or sealing cracks. To develop the warning thresholds, an automated data retrieval and processing 

tool was developed in ArcGIS to obtain recorded precipitation during the previous seven days, forecasted precipitation 

for the next seven days, and the current normalized soil moisture conditions. The recorded precipitation and normalized 

soil moisture were taken from the same sources as Chapter 4, while the forecast data was obtained from NOAA’s Weather 

Prediction Center. These data were obtained for each site and each day in the inclinometer database for a period between 

2017 and 2021. This included 250 individual inclinometer readings with 36 landslide events. Each day was treated as an 

independent opportunity to provide a warning of a potential slope failure and various thresholds for both total precipitation 

(summation of the accumulated precipitation during the previous seven days and forecast precipitation for the next seven 

days) and normalized soil moisture were evaluated. 

6.2 Conclusions 

The goal of this work was to increase the usability of monitoring data collected by ALDOT and to allow for continuous 

monitoring of high-priority landslides to quickly identify problems and prioritize interventions or repairs. The deployment 

of instrumentation at SR-35 and SR-219 demonstrated that continuous monitoring could be added to instruments installed 

at existing sites without making signifcant modifcations to current ALDOT monitoring practices and can provide higher 

resolution data. 

Testing was performed at Auburn University to evaluate and calibrate each of the selected instruments and to compare 

results using a ShapeArray, traditional inclinometer, and tilt sensor in a test on a near full-scale MSE wall. The experimental 

results demonstrated that all of the sensors can perform well in a laboratory setting, but the tilt sensors were very sensitive to 

noise levels and were not used in feld deployment. Similarly, water content sensors and soil suction sensors (tensiometers) 

were found to work well for laboratory conditions, but required additional maintenance and troubleshooting compared with 

the other types of sensors. These devices are only recommended for use when the data they provide are critical to a project. 

The two landslide databases evaluated in Chapter 4 were well ft using the triggering threshold proposed by Godt, 

Baum, and Chleborad 2006, which accurately predicted approximately 80% of the landslide points across the two databases. 

This triggering threshold is recommended for use in Alabama, but does produce a large number of false positive points (i.e., 

non-landslide points falling above the threshold). Normalized soil moisture data appears to be efective at distinguishing 

between storms that are likely to produce a landslide or not. Specifcally, 70% of the inclinometer dataset and all points 

within the DDIR database exhibited normalized soil moisture values above 1 indicating they occurred during wetter than 

average conditions. Similarly, 68% of the points identifed as false positives (i.e., predicted landslides that did not occur) 

had normalized soil moisture values below 1. This pattern underscores the potential correlation between higher soil mois-
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ture levels and the likelihood of landslide occurrence and should be explored during the development of future triggering 

thresholds. 

Rather than develop new triggering thresholds based on recorded data, this study developed a new set of warning 

thresholds that can be used as part of a geotechnical health monitoring plan to provide advance warning of potential slope 

movements. The analysis in Chapter 5 showed that using a total precipitation (accumulated plus forecast) threshold of 6.3 

in (160 mm) and a normalized soil moisture threshold of 1.5 for issuing a warning gave a low rate of false positives ( 1%) 

while providing a warning prior to 70% of the observed failures. The use of these thresholds was demonstrated with an 

analysis of the data from the US-231 Lacey’s Spring landslide. The proposed thresholds would have led to warnings frst 

being issued in January 2019 before cracking was observed in the roadway and again in February 2019 and December 2019 

as the rate of movement was increasing. The performance of the thresholds for future events will need to be evaluated. 

6.3 Recommendations for Implementation 

This study evaluated multiple sensors and data collection strategies that could be used as part of a geotechnical health 

monitoring plan for landslides in Alabama. Some of the recommendations for this are detailed below: 

• Automated data collection should be considered for at least one monitoring well at each monitored site (preferably 

the well that is considered most critical to evaluating stability). Data from SR-219 has shown that the well response 

to rainfall can occur very quickly following rain and quarterly readings will only capture general trends and may miss 

these fuctuations. The cost to instrument a single well is less than $500 and data collection can occur at the same 

time other readings are being collected. For critical sites, automated data collection through a cellular connection is 

a good option. 

• One of the challenges with deploying water level loggers was the use of 1" ID monitoring wells at the two sites in this 

study. Many of the standard water level loggers are meant for wells with inside diameters of 1.5" or 2" and devices 

that can ft in 1" ID wells are often marketed as "micro" or "minature" with a higher cost. Using a smaller diameter 

well will provide a faster response time to changes in groundwater conditions and may be especially important in 

low-permeability materials. For automated monitoring in coarser soils, using a larger diameter wells (e.g., 1.5" ID) 

would reduce the cost and increase the number of options available for water level loggers. 

• Tilt sensors ofer a relatively low-cost way to add shallow sensors, but the MSE wall test at ASEL found that these 

sensors are very sensitive to noise and it can be difcult to distinguish between tilt fuctuations due to noise and those 

due to small movements. Many of the successful case studies using tilt sensors have focused on quiet environments 

(away from sources of noise) and on detecting large movements. These devices may be more useful for instrumenting 

rock slopes or other locations where drilling is difcult, but are not likely to be useful for routine monitoring of 

landslides along highways unless the sensors can be buried to avoid infuences of noise. 

• ShapeArrays have provided continuous and reliable measurements of deformation in both the laboratory and the 
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feld. These devices are expensive and require a dedicated data logger. So, they should be considered for critical sites 

where having daily or weekly warnings of movements will be useful. 

In addition to the instrumentation recommendations provided above, a second aspect of a geotechnical health moni-

toring plan is the ability to visualize and analyze the collected data. One of the major challenges in the current study was 

the level of noise and uncertainty within the inclinometer readings. Several approaches were devised to process and flter 

the data and these have been coded into a program that can be used by ALDOT in the future. Even with this processing, 

a signifcant amount of data could not be used due to either erroneous readings or uncertainty in the noise level. The 

reasons for the noise in the collected data were not clear, but an evaluation of the approaches used to collect inclinometer 

data should be conducted to minimize sources of error and preliminary processing should be performed either in the feld 

or soon after collection to determine if errors have afected a reading. This will help build additional confdence in the 

reliability of the measurements that show small displacements, whereas currently, it is not clear if these readings are due 

to actual movements or noise. 

This study has developed a GIS database of monitored sites, which can be added to and updated in the future as 

new sites are added and new readings are collected. All data collection and processing for the study was done within the 

ArcGIS framework to allow for easy publishing to online maps. Auburn researchers will work with ALDOT to transition 

these systems into their processes and hopefully implement them in their routine monitoring of unstable slopes. 

The warning thresholds developed in Chapter 5 are ready for implementation into ALDOT’s monitoring practice. An 

automated code has been developed to download and process the necessary inputs and identify areas that should receive a 

warning of potential slope movements. These can be published as a raster fle and displayed using ArcGIS on a desktop 

or online. While the thresholds have been very efective at predicting landslides in the current database, it is unknown 

how they will perform in a forward analysis. Auburn researchers will work with ALDOT to implement these warnings and 

collect feedback on the efectiveness. These can then be updated in future studies as needed. 

6.4 Recommendations for Future Research 

Several areas were identifed during this study that could beneft from future research. The tilt sensors showed promising 

results but are very sensitive to noise. Burying these sensors may be efective for reducing this noise, but attempts to do 

this with the devices obtained for this project were not successful. An alternative approach may be to use the tilt sensors 

as in-place inclinometers by placing them in an inclinometer casing. If they were removable, they could serve as a way 

to understand the timing of movements, while traditional inclinometer measurements collected by hand could provide the 

depth and magnitude of the movement. A prototype device was created during this study, but has not yet been tested. This 

is an area where additional work is needed. 

The examination of landslide triggering thresholds showed that soil moisture seems to play a role in the likelihood of 

a large storm either triggering a landslide (true positive) or not triggering a landslide (potential false positive). Additional 

work is needed to see if including the soil moisture (potentially through a normalized value like in this study) in these 
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threshold equations could improve the predictions and reduce the number of false positives. Reducing the number of false 

positives is key to improving the adoption of these thresholds in practice as false positives can reduce confdence in the 

predictions. 

This study has presented a new set of warning thresholds for predicting when landslide movements are likely to occur, 

but more data are needed to evaluate the accuracy of these thresholds for forward predictions. It is hoped that using these 

warnings to perform preventative maintenance will be a potential way to reduce the impacts of landslides on Alabama 

highways, but the efectiveness of this approach will need to be evaluated in future studies. 
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